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Within the scope of the Kubo linear reaction based on the classical Gibbs forma- 
lism without involving known additional representations, expressions in terms of 
the time correlation functions are obtained for four tensors of the viscosity coef- 
ficients of an asymmetric medium. Independently of the time correlation func- 
tion apparatus, expressions are established for the ultimate high-frequency and 
adiabatic elastic moduli by analyzing the increments of the stress tensors upon 

application of a small strain. 

Macroscopic phenomena of the internal (rotational) degrees of freedom are 
the center of attention of phenomenological theories of asymmetric media (see 

[l-4], for example). According to these latter, the motion of a continuum is 
described by the field of mean angular velocities of the natural particle rotation 
as well as by the field of mean translational velocities. The state of strain is 
defined by two strain rate tensors (two strain tensors), and the state of stress by 

tensors of the ordinary and couple stresses. 

Moreover, many important characteristics of the behavior of asymmetric media 

cannot be determined within the scope of the phenomenological approach. An 
experimental study also encounters a number of difficulties. 

Modem methods of the statistical theory of irreversible processes provide the 
possibility, in principle, of a theoretical determination of the characteristics of 
the behavior of the systems under consideration. 

Earlier, conservation laws for asymmetric media [5] were given a statistical 
foundation on the basis of the Liouville equation. Conservation laws and irrevers- 
ible processes in these media have been examined in [S] by the method of a non- 

equilibrium statistical operator. The method of correlative functions of condi- 
tional distributions [7, 81 has been applied in giving a statistical foundation to 
the conservation laws and singularities of the kinematics of a medium. The 
expressions obtained for the stress tensors and the couple stresses afforded a possi- 
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bility of analyzing existence and symmetry conditions for them. 

The present paper is devoted to a construction of a theory of viscosity coeffi- 
cients and elastic moduli for asymmetric media. 

Let us examine a system of N nonspherical molecules characterized by the Hamilton- 

U” = (ai”), rW = qI” - qv 

Here p’ is the particle momentum, canonically conjugate to the radius-vector Q’ of its 
center of inertia ; r”P is the spacing between the particles ‘v and CL; try is a set of angles 
defining the particle orientation ; sk ‘v are projections of the spin momentum of the 

molecule on its principal axes of inertia; Jk are the principal moments of particle 
inertia; ??z is its mass; @ is the potential of pairwise interaction (noncentral forces). 

Under the effect of a small mechnical perturbation let the system Hamiltonian change 
by AH = - RZ (t). Then the mean change in the dynamical variable Q, according 

to the Kubo theory [9], is defined by the expression 

AC?= -$~(R(O)p.(s):Z(t-s)ds (e=kT,Q'+j (2) 
6 

Here the symbol ( ) denotes averaging over the equilibrium canonical ensemble, k 

is the Boltzmann constant, T is the absolute temperature. But the definition of AH 
meets known difficulties. A method of determining the increments of the Hamiltonian 

[lo], which is not related to the introduction of additional particular representations on 

creating a medium flux [ll, 123, has been proposed earlier for a system with central 
and noncentral interaction. A more general approach is proposed below. 

Let us examine a system subjected to a small strain whereupon the particles receive 
the displacement u (q) and are rotated through the small angle cp (q). The change in 

the coordinate and momentum functions due to the strain can be determined from the 

relationship for the increments of the functions of the phase coordinates of a system of 
material points with an infinitesimal canonical transformation [13] generalized to the 

case of a continuous medium 

The square brackets are here the Poisson brackets. pj and lj are the microscopic den- 
sities of the momentum and moment of momentum defined by the equalities 

N 

Pi (9) = 2 Piv6 (9’ - S)- 
‘,=I 

iv 

li (9) = 2 siv6 (9’ - q)v 
,=I 

(4) 

in which 6 is the delta function; siy the components of the moment of momentum of 
the particle relative to the frame of reference. 

Jet us determine the change in the Hamiltonian upon the imposition of a strain by 

using (3). We find the Poisson brackets from the momentum and moment of momentum 
conservation laws p - 81 

..?E =[p,H]++, “li_ 
is 3 tit - [ZiH] = $$ + eijkrkj+ 

3 
(51 
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where eijk is the Levi-Civita tensor. The flux densities of the momentum (stress tensor) 

?tkf and the moment of momentum (couple stress tensor) rtia’ are given by the equal- 

ities [6, 81 

(6) 

Here xkyp are components of the radius-vector P’P, and Fi+ and MiVP are compo- 
nents of the force and moment of the couple exerted by the molecules p on the mole- 
cules y. Let us note that expressions for the mean stress tensors are presented in [8]. 

After integrating by parts and neglecting surface integrals, we represent (3) for q = H 

as 
AH = 5 ‘rik+%dQ + S nir+rirdq (7) 

Here &ik and Yik are the strain tensors 
aui 

&ik = aq, (Pdhki7 
8% 

Yik = yjyq (8) 

Their expressions were earlier given a statistical foundation by another method in a 
derivation of the energy conservation law c]. Considering the homogeneous strain case, 

we write down the final expression for AH after integrating and utilizing the properties 

of the delta function 
AH = TikEii; + nikn(ik (9) 

According to (9) 

AH = --R,Z, - R,Z,, RI = - Tik, R, = -nik, Z1 = 8ik, Z, = Yik 

Keeping (2) in mind, let us select 

a,=$ s (Tit - Tjk”) dt, Qz = + f (IIik-IIi,‘)dt 
--00 -a. 

Where T, k” and Tzi k” are the invariant parts of Tik and nik in the sense of [14] . 

Assuming that the thermodynamic functions of the equilibrium state are independent of 
the mean densities of the moment of momentum (1). by following the proposal in [IS] 
expressions can be written for the invariant parts (the canonical ensemble is utilized) 
in the form 

Tik” = Z,,l/’ + - “$ fH - E), ~~k” = nik’Cr + - “;;’ (H-E) (11) 

Here Tikc r‘ik are the mean equilibrium ordinary and bending stress tensors, E is the 

internal energy and. F’ the system volume. Then on the basis of (2). in the case of 

cyclical loading with frequency o 

Eik = Eik (0) eiwt, rik = rik (0) eiat 



376 V. B. Nemtsov 

we find that 

mn (0) lTik (t) - T*k’ ($)I> dt ernn f 

e-ioL (nrnn (0) jTik (t) - Tik’ @>I > dt ‘fmn 

mn (01 f&k (t) - &to ($)I > dt %n + 

<flrne (0) I&k (t) - Gk” (t)I> dt 

Comparing these equalities with the phenomenological relationship 

t 

s rik’dt = aikmnemn f &kmnYmn 
--m 

(12) 

(13) 

t 

s nik’dt = %mnEm* + d~krnn~rnn 

we obtain explicit expressions for the tensors aikmn,. bikmn, cikmn, dikmn, of the 

viscosity coefficients, in the braces in (12). The.‘Ti k , ZIT.~ k’ in (13) are the viscous 

ordinary and couple stress tensors. It is assumed that rik’ -+ 0, nik’ --f 0 as t --f co. 

The expressions (12) show that the viscosity coefficients po&ess frequency dispersion, 
and permit direct ~vestigation of their ~rnrne~ properties. 

Let the distribution functions used for the averaging in computing the viscosity coef- 

ficients be invariant relative to inversion. Then the mean equilibrium couple stress 
tensor vanishes since it includes the product of the pseudovector kfi by the vector zk. 
The expressions for bihn and cibrr are proportional to the combinations FizkM,,,~, 

therefore, they vanish upon averaging, and the viscosity of an anisotropic medium is 
characterized by the two tensors aikma and &km*. An isotropic nongyrotropic medium 

possesses six viscosity coefficients. In the general case, an isotropic and gyrotropic me- 
dium has twelve viscosity coefficients. For systems with central interaction the viscosity 

is described by the tensor aikmi whose expression agrees with that obtained earlier in 

Cl 01. 
On the basis of the expressions for the viscosiq coefficients, the complex elastic mo- 

duli A, B, C, D describing the viscoelastic behavior of a medium under cyclic 

loading can be obtained 

AiLmn = A&m, + imaikmn, Bikmn = Biqkmn + iabikmn 04) 

Cifm* = Cfgm* f i@Ci):mn, Dikmn = oikrnn + i@&kmn 

Here A”, B”, c”, D” are the adiabatic elastic moduli under slow loading (W = 0). 
Passing to the limit o --)r 00 in (14). the ultimate high-frequency elastic moduli can 
be obtained for a medium with couple snesses. The passage to the limit was considered 
in 116, 181 for the isotropic fluid with central interaction of the spherical molecules 
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when the complex volume and shear moduli of elasticity are expressed in terms of the 
volume qv and shear q viscosity coefficients by means of the relationships 

K (0) = Kl) + iotjv (w), P (0) = iOrl(@) 05) 

The ultimate high-frequency elastic moduli (averaging is performed in the statistical 
method of conditional distributions in the FI1 approximation [17] are defined by the 

equalities 

K, ==+++ ~&$+(r)ladr 06) 
TO 

where u is the molecular volume, rO is the radius of the molecular cell, and U-’ Cp (r) 
represents the conditional distribution function F,, (qs/ql) [17, 181. We also obtain 
expressions for the ultimate high-frequency elastic moduli of an asymmetric medium 

by another method whose idea is due to Green 1191 and which he applied to a system 
of spherical molecules. To do this we find the change in the linear approximation of 

the mean stress tensors upon application of a small strain by taking into account the 
transformation of the space and angular variables, as well as the momentum, in contrast 

to n9]. The mean stress tensors are determined by the expressions 

Zik = - 1 
m ss 8. 

piprF,,dp ds + + ($5 Fix, Fll(l)dr da da’ (17) 

The averaging is described by using the equilibrium distribution functions F,, (q, p, S) 
and Ffi’ (q, r, a, a’). The actual averaging with respect to the momenta will be 

performed after their transformation. It is convenient to represent the averaging opera- 
tion as 

%k = (Tik, F>, nik = (nikv F) (18) 

Here (, F) denotes averaging in the sense of ~171. The stress tensor increment in a 
linear approximation can be written as 

A’ik = <ATik, F) -I- (Titt, AF) W) 

Anik = ( AIlik, F) + (nik,IAJ’) 

The change in the distribution functions as a result of the strain is determined from 

the condition of invariance of the appropriate probabilities. Since w = a$ (1 + 
$_ div u), then by virtue of the smallness of the strain 

F,,+dp+ ds’ = (1 - div u) F,, dp ds 
FllW dr+ da+ da’+ = (1 - div u) Fll(l) dr da da’ 

This can be written as 

AF = - F -f$- = - FG*,ej, 
1 

Then (20) 

h%ik = (ATih - Tik6jnejn, F>, Anik = (A&, - I&kGjnEjn, F) 



378 V. B. Nemtsov 

Let us determine AT,, and AIIik on the basis of (3). l_et us apply the relationships 

6 (q’ - q) - 6 (SE” - q) = &“I* as (ga;- 9) + . . . 
n 

(22) 

to transform the appropriate Poisson brackets. To evaluate the Poisson brackets contain- 
ing the density of the moment of momentum, we moreover utilize 

aQ 
-+ 

aQ 
acp,’ 

- + ejnmx,Yp sp = 0 acpy m 
(23) 

It expresses the invariance of the function Q (Fp, a”, a@) of the variables of two 

particles relative to transformations conserving the mutual orientation of the particles 
and the radius-vector connecting their centers of inertia. The quantities aQ ! 8qi 
denote proportionality coefficients between the linear part of the increment in the func- 

tion Q (because of the change in the angular variables of one particle) and the com- 
ponents of the angle of slight rotation ‘pi. After having evaluated the quantities ATih 
and hll,, we write the average of the relations (20) explicitly, and averaging with 
respect to the momenta, we obtain 

A%/c = [FUR (s$ti, f 6kj6in) - TikGjn f (24 

Here Mi is the moment of the couple acting on the molecule whose orientation is deter- 
mined by the set of angles a. The expressions in the square brackets define the tensors 
of the elastic moduli A”, @, coo, Do3 of the asymmetric medium under high-fre- 

quency loading 

We see that the elastic moduli now under consideration are ultimate for w --t 00 by 

the example of an isotropic medium with central interaction I which is characterized 
by the one elastic modulus tensor A$,,. Taking into account that Fi = r-l@ (r)xi, 

we find after averaging according to the orientations that 

It hence follows that the expressions for k’, and pco agree completely with the expres- 
sions (16) obtained by using the passage to the limit in the formulas for the complex 
elastic moduli. 
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The reasoning on the symmetry of the elastic moduli tensors is analogous to that 
utilized earlier for the viscosity coefficient tensors and leads to similar results. It can 
here still be established easily that in the absence of initial stresses the tensors A and 

D are symmetric relative to-commutation of the first 
B = C, because of the equalities aF 

. 8Fj 
-&=Fy 

Let us obtain an expression for the adiabatic elastic moduli of asymmetric fluids by 

again considering a change in the mean stress tensors upon application of a slight strain. 
Averaging with respect to the momenta is here carried out in the kinetic parts of the 

stress tensors by using the Maxwell distribution 

and second pair of subscripts, and 

(25) 

For fluids under adiabatic loading (O = 0) the increment in the mean stress tensors 
is determined by the change in the temperature and volume 

The change in medium temperature under adiabatic strain is expressed by a formula 
generalizing the known relationship for an elastic body with a symmetric stress tensor 

YZOI 
(27) 

where c, is the specific heat at constant volume referred to one particle. The general- 

ization lhcludes the appearance of the second member. 

On the basis of (26) and (27),expressions are also obtained for the tensors of the adia- 
batic elastic moduli 

The passage to a fluid with central interaction taking into account that ~~ k = - P6, k 
(P is the pressure) results in the known formula 

The expressions obtained for the viscosity coefficients and elastic moduli contain a 
dependence on the parameters of intramolecular interaction and the thermodynamic 
state of the medium, and permit evaluation. The expressions for the high-frequency 

and adiabatic elastic moduli are also applicable to the determination of the viscosity 
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coefficients involving the appropriate relaxation times pl$ 
The author is grateful to D. N. Zubarev for interest in the research and to L, A. Rott 

and E. L. Aero for discussions and valuable comments. 
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CLASSIFICATION OF LINEAR INTEGRALS OF A HOLONOMIC 

~C~~C~ SYS~~ WITH TWO DEQ~~S OF F~EDO~ 

Let h# = c be the linear integral of a mechanical system with two degrees of 

PMM Vol.35, Np3, 1971, pp.420-422 
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The linear integrals of a mechanical system are classified according to the solu- 
tions of the Killing equation and of the form of the generalized forces. An exam- 
ple of a mechanical system with two degrees of freedom which has a generalized 

force function but no linear integral, was given in [I]. 

freedom. This requires that [1] 

v&x f V,h, = 0 (1) 

3L,QX = 0 (2) 

Considering 

as a linear element of the two-dimensional ~ema~ian space V, we find, that the fol- 
lowing possibilities f2. 31 may be given to the Killing equation (1). Equations (1) have: 

a) no solution, 
b) one solution, or 

c) three solutions. 
In the case (a) Eq. (1) has no solution, hence the mechanical system has no linear 

integral. In the cases (b) and (c), using integrable transformations the linear element 

can be reduced to the form 

2T dt= = cl9 = v (q’) wql)” + wf)“l (3) 

then it is said that the rotation metric is given @I. It has been shown that each rotation 


